Toxicity and efficacy of stereotactic body radiation therapy for the treatment of locally advanced pancreatic cancer in a phase 3 trial Karyn A. Goodman¹, Michael J. Pishvaian^{2,8}, Charles D. Lopez³, Kenneth Meredith⁴, Emmanuel E. Zervos⁵, Hassan Hatoum⁶, Ki Y. Chung⁷, Alex Tsobanoudis⁸, Daniel J. Berg⁹, Antonio Ucar¹⁰, Reza Nazemzadeh¹¹, Thor Johnson¹², Nainesh Parikh¹³, Brian Kouri¹⁴, Christopher

Laing¹⁵, Brian A. Boone¹⁶, Imtiaz Qureshi⁸, Ramtin Agah⁸, Amer H. Zureikat¹⁷ ¹Icahn School of Medicine at Mount Sinai , New York, NY; ²Johns Hopkins University, Breant Carolina University, Greenville, NC; ⁶University of Oklahoma, Oklahoma City, OK; ⁷Prisma Health Cancer Institute, Boiling Springs, SC; ⁸RenovoRx, Los Altos, CA; ⁹University of South Carolina, Charleston, SC; ¹³Moffit Cancer Center, Tampa, FL; ¹⁴Wake Forest Baptist Medical Center, Winston-Salem, NC; ¹⁵Sutter Cancer Center, Sacramento, CA; ¹⁶West Virginia University, Morgantown, WV; ¹⁷University of Pittsburgh Medical Center, Pittsburgh, PA

BACKGROUND

Locally advanced pancreatic cancer (LAPC) is one of the deadliest cancers. Radiotherapy (RT) is part of standard management¹, but the optimal RT technique has not been determined. The most common approaches are:

- Stereotactic body radiation therapy (SBRT) or
- Chemoradiation using Intensity-modulated radiation therapy (IMRT)

TIGeR-PaCⁱ is a phase III clinical trial investigating the efficacy of intra-arterial chemotherapy treatment utilizing a novel dual-balloon catheter compared to the standard of care. Prior to randomization, patients undergo radiation therapy during the induction phase. Herein, we use clinical data to compare **toxicity** and **efficacy** between SBRT and IMRT.

METHODS

LAPC patients with a 0-1 ECOG and diagnosis within 6 weeks begin induction with chemo (IV gemcitabine/nab-paclitaxel) and radiation therapy (SBRT or IMRT) per the study schema:

We analyzed data from **134** patients:

- 75 IMRT patients (50 Gy in 25 fractions; concurrent PO capecitabine BID Mon-Fri) or
- 59 SBRT patients (33 Gy in 5 fractions)

The decision for SBRT vs. IMRT was site-driven and not pre-specified by TIGeR-PaC protocol

Analyzed:

- Adverse event (AE) Incidenceⁱⁱ during, and 2 weeks post radiation
- Tumor size
- Mean percent changeⁱⁱⁱ
- CA 19-9 Mean percent changeⁱⁱⁱ

Of the 134 patients, **104** had interpretable imaging data to analyze tumor size and only **31** with analyzable CA 19-9 data.

CONCLUSION

While this study was not designed as a head-to-head comparison of SBRT versus IMRT, these data suggest that SBRT is better tolerated than IMRT without any compromise in efficacy in patients with LAPC.

- With SBRT, there was less investigator-led withdrawal of patients due to SAE than IMRT
- No statistically significant difference in local tumor response between SBRT and IMRT

¹National Comprehensive Cancer Network. Pancreatic Adenocarcinoma (Version 2.2022). https://www.nccn.org/professionals/physician_gls/pdf/pa ncreatic.pdf. Accessed December 13, 2022.

RESULTS

The 134 patients across 22 sites (63 male; 68.5 yr median age) showed no significant difference in baseline demographics between patients treated with SBRT or IMRT.

However, AEs were significantly different between the two:

AE			
Category	IMRT (N=75)	SBRT (N=59)	p-value ⁱⁱ
Any AE	49 (65.3)	26 (44.1)	*0.015
Gastrointestinal AE	33 (44.0)	10 (16.9)	**0.001
Grade ≥3 AE	20 (26.7)	6 (10.2)	*0.026
Serious AE	10 (13.3)	2 (3.4)	0.066
On-Study Death	1 (1.3)	0 (0.0)	1.000
Withdrawal	9 (12.0)	1 (1.7)	*0.042

ⁱⁱCalculated using Fisher's exact test; *p-value ≤ 0.05 ; **p-value ≤ 0.01

Additionally, there was no significant difference between mean CA 19-9 change and mean tumor size change and at baseline between patients treated with SBRT or IMRT.

CA 19-9 Measurement	IMRT (N=17)	SBRT (N=14)	n-value ⁱⁱⁱ
Mean CA 19-9 Change (%)	-40.7 ±40	+9.8±111	0.262
TUMOR SIZE Measurement	IMRT (N=54)	SBRT (N=50)	p-value ⁱⁱⁱ
Mean Baseline Long Axis (cm)	4.30	4.04	0.336
Mean Tumor Size Change (%)	-11.7	-12.6	0.792

ⁱⁱⁱCalculated using independent samples t-test

FUTURE

Further prospective studies addressing this question are needed to determine the optimal RT modality for patients with LAPC. SBRT appears to be the best RT backbone for adding novel therapies such as intra-arterial chemotherapy.

